ORGANIC LETTERS

2009 Vol. 11, No. 10 2113-2116

Iron-Promoted Cyclization/Halogenation of Alkynyl Diethyl Acetals

Tongyu Xu, Zhengkun Yu,* and Liandi Wang

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China

zkyu@dicp.ac.cn

Received March 18, 2009

ABSTRACT

FeCl₃- and FeBr₃-promoted cyclization/halogenation of alkynyl diethyl acetals has been efficiently realized, selectively affording (*E*)-2-(1-halobenzylidene or alkylidene)-substituted five-membered carbo- and heterocycles which were then efficiently transformed to vinylarenes by Suzuki coupling. The present protocol has provided a new alternative route to vinylic C—Cl and C—Br bond formation.

Acetal functional groups are usually used to protect carbonyls in organic synthesis, ^{1,2} and acetal derivatives have exhibited versatile chemistry in carbon—carbon bond formation due to easy deprotection and transformation of the acetal functions by acid catalysis. ^{3,4} Lewis acid-promoted carbon—carbon bond-forming cyclization of alkenyl-aldehyde acetals is well-known (Scheme 1). ⁵ TiBr₄-promoted reactions of alkenyl-aldehyde acetals with silyl enol ethers formed five-membered rings. ⁶ SnCl₄- and TiCl₄-catalyzed acetal-initiated polyene cyclization produced terpenoids. ⁷ Benzaldehyde acetal was

Scheme 1. Lewis Acid Promoted C-C Bond-Forming Cyclization/Halogenation of Acetals (LA \geq 1.0 equiv)

$$\begin{array}{c} \text{TMSI, TiCl}_4 \\ \text{or InCl}_3 \\ \text{n} = 1, 2; X = I, CI \\ \text{OMe} \\ \end{array}$$

$$\begin{array}{c} \text{EtO} \\ \text{o} \\ \text{TiCl}_4 \\ \text{CH}(\text{OMe})_2 \\ \end{array}$$

$$\begin{array}{c} \text{TiCl}_4 \\ \text{OH} \\ \text{OMe} \\ \end{array}$$

$$\begin{array}{c} \text{CH}(\text{OR})_2 \\ \text{TiCl}_4 \\ \text{OR} \\ \end{array}$$

$$\begin{array}{c} \text{CH}(\text{OR})_2 \\ \text{OR} \\$$

used in BCl₃-involved organocatalysis. ⁸ Allenyl-aldehyde dimethyl acetals reacted with iodotrimethylsilane TMSI, TiCl₄, or InCl₃ to afford 2-(1-halovinyl)cycloalkyl methyl ethers. ⁹ TiCl₄-promoted cyclization of ethynylcyclo-hexanol acetals ¹⁰ and β -hydroxy alkynyl acetals ¹¹ generated chlorohydropyrans and 1-chlorocyclohexenes, respectively. TMSI-

⁽¹⁾ Greene, T. W.; Wuts, P. G. Protective Groups in Organic Synthesis, 3rd ed.; John Wiley and Sons: New York, 1999.

⁽²⁾ For selected recent reports, see: (a) Yu, M. L.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 2783. (b) Fressigné, C.; Girard, A.-L.; Durandetti, M.; Maddaluno, J. Angew. Chem., Int. Ed. 2008, 47, 891.

⁽³⁾ For selected recent reports on the reactions of acetals, see: (a) Ratnikov, M. O.; Tumanov, V. V.; Smit, W. A. *Angew. Chem., Int. Ed.* **2008**, 47, 9739. (b) Umebayashi, N.; Hamashima, Y.; Hashizume, D.; Sodeoka, M. *Angew. Chem., Int. Ed.* **2008**, 47, 4196. (c) Zhao, Y.-J.; Loh, T.-P. *Org. Lett.* **2008**, 10, 2143.

⁽⁴⁾ For selected recent reports on silyl ketene acetals, see: (a) Denmark, S. E.; Chung, W.-J. J. Org. Chem. 2008, 73, 4582. (b) Suto, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 500. (c) Hamura, T.; Ibusuki, Y.; Uekusa, H.; Matsumoto, T.; Suzuki, K. J. Am. Chem. Soc. 2006, 128, 3534.

^{(5) (}a) Mukaiyama, T.; Murakami, M. Synthesis 1987, 1043. (b) Trost, B. M.; Chen, D. W. C. J. Am. Chem. Soc. 1996, 118, 12541. (c) Sammakia, T.; Smith, R. S. J. Am. Chem. Soc. 1994, 116, 7915. (d) Denmark, S. E.; Almstead, N. G. J. Am. Chem. Soc. 1991, 113, 8089.

⁽⁶⁾ Li, H.; Loh, T.-P. J. Am. Chem. Soc. **2008**, 130, 7194.

⁽⁷⁾ Zhao, Y.-J.; Loh, T.-P. J. Am. Chem. Soc. **2008**, 130, 10024.

⁽⁸⁾ Reisman, S. E.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. **2008**. *130*, 7198.

⁽⁹⁾ Kang, S.-K.; Kim, Y.-M.; Ha, Y.-H.; Yu, C.-M.; Yang, H.; Lim, Y. *Tetrahedron Lett.* **2002**, *43*, 9105.

⁽¹⁰⁾ Melany, M. L.; Lock, G. A.; Thomspon, D. W. J. Org. Chem. 1985, 50, 3925

⁽¹¹⁾ Kim, Y.-H.; Lee, K.-Y.; Oh, C.-Y.; Yang, J.-G.; Ham, W.-H. *Tetrahedron Lett.* **2002**, *43*, 837.

induced cyclization of 6-alkynyl acetals formed iodobenzylidene cyclohexyl methyl ethers. 12 SnCl₄-initiated ringenlarging cyclopentene annulation was realized with silyl ether alkynyl-aldehyde dimethyl acetals. 13 Recently, iron salts have emerged as alternative and promising catalysts for a wide range of organic transformations due to their advantages such as low cost, nontoxicity, good stability, and easy manner to handle. $^{14-18}$ FeX₃ (X = Cl, Br)-catalyzed Prins-type cyclization between homopropargylic alcohol and aldehydes formed 2-alkyl-4-halo-5,6-dihydro-2H-pyrans, ^{19a} and FeX₃promoted coupling of alkynes and aldehydes afforded 1,5dihalo-1,4-dienes. 19b Noniron Lewis acid-catalyzed cyclization of alkynes and aldehydes or alkynyl carbonyls have also been documented.²⁰ Intrigued by the versatile interactions of Lewis acids with acetals, we envisioned that the reactions of FeCl₃ with acetals might generate active species which can initiate new reactions. Herein, we report FeCl₃- and FeBr₃-promoted cyclization/halogenation of alkynyl diethyl acetals to form (E)-2-(l-halobenzylidene or alkylidene)substituted five-membered carbo- and heterocycles.

In our initial studies, the reaction of alkynyl acetal **1a** was chosen to screen the reaction conditions (Table 1). Treatment of **1a** with 10 mol % FeCl₃ in CH₂Cl₂ at ambient temperature for 0.5 h afforded the desired product 2a in <19% yield (entry 1) with a low conversion of **1a**. Increasing the amount of FeCl₃ to 0.33 equiv (total chlorine \sim 1.0 equiv), the same reaction formed 2a with (E)-configuration in 60% isolated yield with incomplete conversion of 1a within 30 min (entry 2), suggesting that the second and/or third chlorides in the promoter took part in the reaction. A trace amount of isomeric 2a (<5%), presumably the six-membered product of Martín-type, 19 was detected by GC-MS analysis (see Supporting Information), but it was not successfully isolated. Further increasing the amount of FeCl₃ enhanced the formation of 2a (entries 5-10). It was found that the 1:1 molar ratio reaction of 1a with FeCl₃ proceeded more efficiently at 0 °C than at other temperatures, reaching a 77%

Table 1. Screening of the Reaction Conditions^a

entry	cat./equiv	solvent	temp	time (h)	yield (%)b
1	FeCl ₃ /0.10	$\mathrm{CH_{2}Cl_{2}}$	rt	0.5	<19 ^c
2	FeCl ₃ /0.33	$\mathrm{CH_{2}Cl_{2}}$	\mathbf{rt}	0.5	60
3	FeCl ₃ /0.33	$\mathrm{CH_{2}Cl_{2}}$	reflux	0.5	59
4	FeCl ₃ /0.33	$\mathrm{CH_{2}Cl_{2}}$	0	0.5	54
5	$FeCl_3/0.50$	$\mathrm{CH_{2}Cl_{2}}$	\mathbf{rt}	0.5	66
6	$FeCl_3/0.50$	$\mathrm{CH_{2}Cl_{2}}$	0	0.5	68
7	$FeCl_3/0.70$	$\mathrm{CH_{2}Cl_{2}}$	0	0.5	74
8	FeCl ₃ /1.00	$\mathrm{CH_{2}Cl_{2}}$	rt	0.5	73
9	$FeCl_3/1.00$	$\mathrm{CH_{2}Cl_{2}}$	reflux	0.5	50
10	$FeCl_3/1.00$	CH_2Cl_2	0	0.5	77
11	FeCl ₃ /1.00	toluene	0	0.5	67
12	FeCl ₃ /1.00	THF	0	5	20
13	$FeCl_3/1.00$	H_2O	\mathbf{rt}	0.5	$< 1^c$
14	CuCl ₂ •2H ₂ O/1.00	$\mathrm{CH_{2}Cl_{2}}$	\mathbf{rt}	12	
15	$FeCl_2/1.00$	$\mathrm{CH_{2}Cl_{2}}$	reflux	12	
16	TiCl ₄ /1.00	$\mathrm{CH_2Cl_2}$	0	0.2	6^d
17	SnCl ₄ /1.00	$\mathrm{CH_{2}Cl_{2}}$	0	0.5	52

^a Conditions: **1a**, 0.5 mmol; solvent, 5 mL. ^b Isolated yields of **2a**. ^c Determined by GC analysis. ^d See eq 2.

yield for **2a**. The reaction also worked well in toluene (entry 11) but less efficiently in THF and water (entries 12 and 13).

CuCl₂·2H₂O and FeCl₂ did not initiate the reaction (entries 14 and 15). Unexpectedly, treatment of **1a** with TiCl₄ (1.0 equiv) afforded **2a** (6%) and the dichloro product **3** (52%) within 10 min (entry 16 and eq 2). However, the reaction of **1a** with SnCl₄ (1.0 equiv) exclusively gave **2a** as the product (52% yield, entry 17). Thus, the reaction conditions were optimized to: **1a** (0.5 mmol), FeCl₃ (1.0 equiv), CH₂Cl₂ as the solvent, 0 °C/0.5 h under a nitrogen atmosphere.

The reactions of FeCl₃ and FeBr₃ with other alkynyl acetals were then carried out to define the protocol generality (Table 2). In all the cases, the (*Z*)-products were not isolated in a measurable amount. With *O*-linked alkynyl acetals as the substrates, the reactions produced the (*E*)-products **2a**—**i** in 61—91% yields (entries 1—9). Substituents on the aryl group of the alkynyl moiety did not obviously affect formation of the desired products (entries 1—8), but an adjacent 2-substituent such as 2-methoxy lessened generation of the product such as **2i** (entry 9). Increasing the steric hindrance of the linker chain dramatically decreased the reaction efficiency (entry 10) or made the reaction complicated (entry 11). Benzoyl alkynyl acetal (**1l**) also underwent a complicated

⁽¹²⁾ Takami, K.; Yorimitsu, H.; Shinokubo, H.; Matsubara, S.; Oshima, K. Synlett 2001, 2, 293.

⁽¹³⁾ Johnson, T. O.; Overman, L. E. Tetrahedron Lett. 1991, 32, 7361.

⁽¹⁴⁾ For recent reviews, see: (a) Correa, A.; Mancheño, O. G.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108. (b) Enthaler, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 3317. (c) Fürstner, A.; Martin, R.; Krause, H.; Seidel, G.; Goddard, R.; Lehmann, C. W. J. Am. Chem. Soc. 2008, 130, 8773. (d) Fürstner, A.; Martin, R. Chem. Lett. 2005, 34, 624. (e) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217.

^{(15) (}a) Norinder, J.; Matsumoto, A.; Yoshikai, N.; Nakamura, E. *J. Am. Chem. Soc.* **2008**, *130*, 5858. (b) Volla, C. M. R.; Vogel, P. *Angew. Chem., Int. Ed.* **2008**, *47*, 1305. (c) Lu, Z.; Chai, G. B.; Ma, S. M. *J. Am. Chem. Soc.* **2007**, *129*, 14546.

^{(16) (}a) Carril, M.; Correa, A.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 4862. (b) Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 2880. (c) Bistri, O.; Correa, A.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 586.

^{(17) (}a) Wen, J.; Zhang, J.; Chen, S.-Y.; Li, J.; Yu, X.-Q. Angew. Chem., Int. Ed. 2008, 47, 8897. (b) Li, Z. P.; Yu, R.; Li, H. J. Angew. Chem., Int. Ed. 2008, 47, 7497.

^{(18) (}a) Langlotz, B. K.; Wadepohl, H.; Gade, L. H. *Angew. Chem., Int. Ed.* **2008**, *47*, 4670. (b) Shaikh, N. S.; Enthaler, S.; Junge, K.; Beller, M. *Angew. Chem., Int. Ed.* **2008**, *47*, 2497.

^{(19) (}a) Miranda, P. O.; Díaz, D. D.; Padrón, J. I.; Bermejo, J.; Martín, V. S. *Org. Lett.* **2003**, *5*, 1979. (b) Miranda, P. O.; Díaz, D. D.; Padrón, J. I.; Ramírez, M. A.; Martín, V. S. *J. Org. Chem.* **2005**, *70*, 57.

^{(20) (}a) Saito, A.; Umakoshi, M.; Yagyu, N.; Hanzawa, Y. Org. Lett. **2008**, 10, 1783. (b) Jin, T.; Yamamoto, Y. Org. Lett. **2008**, 10, 3137.

Table 2. FeX₃-Promoted Cyclization/Halogenation of 1^a

$$\underbrace{\begin{array}{c}
\text{OEt} \\
\text{OEt}
\end{array}} \quad \underbrace{\begin{array}{c}
\text{FeX}_3 \text{ (1 equiv)} \\
\text{X = CI, Br}
\end{array}} \quad \underbrace{\begin{array}{c}
\text{X} \\
\text{OEt}
\end{array}} \quad (3)$$

entry	substrate	yield (%) ^b	entry	substrate	yield (%) ^b
1	OEt 1a	GI Ph. OEt 2a (77)	13	1m	2m (54)
2	oet 1b	2b (78)	14	OR CHORY	2m (32)
3	Det 1c	2c (82)	15	TeN OEt 10	TaN Me OER 20 (77)
4	oet 1d	2d (91)	16	TEN OB 1p	2p (45)
5°	OEt 18	2e (76)	17	Tan OEt 1q	7eN OEt 2q (78)
6	OEt 1f	2f (76)	18	Ten DEL DIMO	2r (78)
7	ott OBn 1g	2g (75)	19	Bon OEt 18	BnN OEt 28 (0)
8	OEt 1h	2h (75)	20	Broyce Der 1t	2t (71)
9	OEt 11	2i (61)	21′	1a	2aa (73)
10	oper 1j	2] (18)	22'	1р	7el OEt 2pp (50)
11	OE 1k	OEz 2k (-) ^d	23′	1q	Tel Ph OEt 2qq (90)
12°	OEt 11	21 (-)	24 [†]	1t	2tt (75)

 a Conditions: **1a**, 0.5 mmol; FeCl₃, 0.5 mmol; CH₂Cl₂, 5 mL; 0 °C, 10-30 min. b Isolated yields in parentheses. c rt, 2 h. d Complicated. e rt, 12 h. f FeBr₃ (0.5 mmol) instead of FeCl₃ was used.

reaction (entry 12). When acetal 1m was used as the substrate, the desired product 2m was obtained in 54% yield with the formyl group unchanged (entry 13). Unexpectedly, the reaction of diacetal 1n also yielded 2m as the product (32%, entry 14), revealing that the desired product 2n may be initially formed and then deprotected to 2m (eq 4). Tosyl-N-linked alkynyl acetals (10-r) underwent the same type of reactions, affording the desired products 20-r in 45-78% yields (entries 15–18). It should be noted that the reaction of alkyl-terminated alkynyl acetal 1p proceeded less efficiently than those of its methyl and aryl analogues 10, 1q, and 1r. Somehow, benzyl-N-linked alkynyl acetal 1s did not show any reactivity (entry 19). The reaction of aliphatic carbon-linked alkynyl acetal 1t formed 2t in 71% yield (entry 20). In the same fashion as using FeCl₃ as the promoter, FeBr₃-promoted reactions of 1a, 1p, 1q, and 1t produced bromine-incorporated products 2aa, 2pp, 2qq, and 2tt in 50–90% yields (entries 21–24). It is noteworthy that FeCl₃-

Scheme 2. Proposed Mechanism

$$\overbrace{ \text{OEt} \atop \text{OEt} \atop \text{FeX}_2(\text{OEt}) }^{\text{R}} \overbrace{ \text{Prins-type} \atop \text{cyclization} }^{\text{Prins-type}} \overbrace{ \text{cyclization} \atop \text{OEt} }^{\text{R}} \overbrace{ \text{OEt} \atop \text{OEt} }^{\text{N}} \underbrace{ \text{Prins-type} \atop \text{cyclization} }_{\text{OEt}} \underbrace{ \text{OEt} \atop \text{OEt} }^{\text{N}} \underbrace{ \text{Prins-type} \atop \text{cyclization} }_{\text{OEt}} \underbrace{ \text{OEt} \atop \text{OEt} }^{\text{N}} \underbrace{ \text{Prins-type} \atop \text{cyclization} }_{\text{OEt}} \underbrace{ \text{OEt} \atop \text{OEt} }_{\text{OET}} \underbrace{ \text{Prins-type} \atop \text{OET} }_{\text{OET}} \underbrace{ \text{OET} \atop \text{OET} }_{\text{OET}} \underbrace{ \text{Prins-type} }_{\text{OET}} \underbrace{ \text{Prins$$

promoted reactions of terminal alkynyl acetals or substrates with an additional methylene linker only formed complicated mixtures from which no desired products were successfully isolated.

$$\begin{array}{c}
\text{In} \quad FeCl_3 \\
\text{OEt} \quad CH(OEt)_2
\end{array}$$

$$\begin{array}{c}
\text{FeCl}_{3:x}(OEt)_x \\
\text{SiO}_2 / H_2O
\end{array}$$

$$\begin{array}{c}
\text{OEt} \quad CHO$$

$$\begin{array}{c}
\text{OEt} \quad CHO
\end{array}$$

$$\begin{array}{c}
\text{OET} \quad CHO
\end{array}$$

$$\begin{array}{c}
\text{OET} \quad CHO
\end{array}$$

Although an oxocarbenium ion intermediate has never been isolated from Lewis acid promoted reactions of acetals, 6-10,12 a plausible mechanism for FeCl₃- and FeBr₃promoted cyclization/halogenation of alkynyl diethyl acetals 1 is proposed in Scheme 2 based on Denmark et al.'s work. 5c,d FeCl₃ abstracts an ethoxy moiety from 1 to form species FeCl₂(OEt) (I), oxocarbenium ion II, and a chloride anion. A Prins-type cyclization⁶ occurs through intramolecular nucleophilic attack of the acetylenic moiety to the cationic carbon atom of **II**, followed by trapping the resultant vinyl cation III by the chloride anion, yielding the desired product 2. Products 2 were fully characterized, and their (E)configuration was further confirmed by the NOESY experiments of 2f and 2q (see Supporting Information) and X-ray crystallographic structural determination of 20 (Figure 1). The high or exclusive (E)-stereoselectivity for 2 is attributed to the steric hindrance from the ethoxy moiety and the ring strain of the newly formed five-membered cyclic systems. Martín's reactions of FeX3-catalyzed homopropargylic alcohol (a terminal alkyne) with aldehydes usually gave the six-membered ring products, and only in one case a type 2 product was obtained. 19a Aliphatic, 21a-c vinylic, 19,21d and aromatic^{21e} C-Cl bond-forming reactions have played an important role in organic synthesis. Thus, our work provides an alternative route to five-membered rings with a vinylic C-Cl or C-Br bond from internal alkynyl acetals.

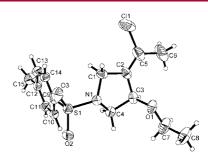


Figure 1. Molecular structure of compound 20.

Org. Lett., Vol. 11, No. 10, 2009

Table 3. Palladium-Catalyzed Coupling of 2^a

entry	substrate	method	time (h)	product	yield (%) ^b
1	OEt 2a	А	12	OEt 4a	90
2	OEt 2b	Α	8	OEI 4b	87
3	OEI 2c	Α	12	COE 4c	84
4	OEt OBn 2g	Α	12	OEL OBn 4d	90°
5	CI OME 2h	Α	12	CHO 4e	91
6	oet 2i	Α	12	Ar OMe OEI 4f	62
7	CI C	Α	12	OEI 4g	61
	oe Cal			Ar 4gg	27
8	OE: 2e	А	24	4h	27
9	OEL NO2 2f	В	2	OEI NO24i	24
10	Con 2m	В	2	Сто 4j	16
11	TsN OEt 20	Α	24	TsN OEt 4k	62
12	TsN OEt 2q	В	12	TsN Ph	71
13	TsN CH OMe 2r	В	12	Tsi OEI 4m	28
14	OEI 2aa	Α	12	Ph OEI 4a	78
15	TsN OEt 2pp	В	2	Tsh OEt 4n	26
16	TsN OEL 2qq	В	12	TsN Ph	79
17	EtO ₂ C Ph	В	24	E102C Ph	71

 a Conditions: **2**, 0.3 mmol; *p*-tolylboronic acid, 1.5 equiv; Cs₂CO₃, 2.0 equiv; DMF, 1 mL; 5.0 mol % Pd(OAc)₂; 135 °C. (A) 20 mol % PPh₃; (B) 5 mol % XantPhos. b Isolated yields. c Z/E=4:1 by $^1{\rm H}$ NMR.

Next, arylation of **2** with *p*-tolylboronic acid was tried in DMF at 135 °C by using Pd(OAc)₂/PPh₃ or XantPhos as the catalyst in the presence of Cs₂CO₃ base (Table 3 and eq 5). The Suzuki coupling reactions of **2a**–**c** and **2g**–**i** proceeded efficiently affording the desired products **4a**–**f** in 62–91% isolated yields (entries 1–6). When the dichloro

substrate, i.e., **2d** bearing both vinylic and aromatic C-Cl bonds, was applied, its reaction produced the desired product **4g** (61%) as well as the double-arylation product **4gg** (27%) (entry 7). It is obvious that **4gg** was generated from **4g** under the palladium catalysis conditions (eq 6). An electron-withdrawing substituent on the aryl group of **2** decreased the reactivity of the substrates such as **2e**, **2f**, and **2m** and led to inefficient formation of the desired products (entries 8–10). It

$$\begin{array}{c}
\text{CI} \\
\text{OEt} \\
\text{OEt}
\end{array}
+ \text{ArB(OH)}_{2} \xrightarrow{\text{Pd(OAc)}_{2}} \begin{array}{c}
\text{Pd(OAc)}_{2} \\
\text{PPh}_{3}
\end{array}
+ \begin{array}{c}
\text{ArB(OH)}_{2} \\
\text{OEt}
\end{array}
+ \begin{array}{c}
\text{ArB(OH)}_{2} \\
\text{Pd(OAc)}_{2}
\end{array}
+ \begin{array}{c}
\text{Ar B(OH)}_{2} \\
\text{OEt}
\end{array}
+ \begin{array}{c}
\text{Ar B(OH)}_{2} \\
\text{Pd(OAc)}_{2}
\end{array}
+ \begin{array}{c}
\text{Ar B(OH)}_{2} \\
\text{OEt}
\end{array}
+ \begin{array}{c}
\text{Ar B(OH)}_{2} \\
\text{OET}$$
+ Ar B(OH)_{2} \\
\text{OET}

+ Ar B(OH)_{2} \\

is noteworthy that **2f** and **2m** did not undergo the coupling reactions in the presence of PPh3, while the same reactions occurred to form 4i and 4j in 24% and 16% yields with XantPhos as the ligand (entries 9 and 10), respectively. Substrate 2j is thermally unstable and thus could not be applied in the coupling reaction. The tosyl-N-heterocyclic substrates exhibited much lower reactivity than their Oheterocyclic analogues. Thus, the reactions of 20 and 2q afforded the desired products 4k and 4l in 62-71% yields (entries 11 and 12), but the reaction of 2r only gave 4m in 28% yield (entry 13). Compounds **2p** and **2t** showed no reactivity, but the bromide substrates 2aa, 2qq, and 2tt underwent the coupling reactions as efficiently as their chloride analogues (entries 14, 16, and 17). Compound **2pp** also demonstrated a low reactivity (entry 15). As alternatives to the vinylic C-Cl substrates, the bromide analogues of type 2 have shown promising applications in vinylic C-C bond formation.²²

In conclusion, FeCl₃- and FeBr₃-promoted cyclization/halogenation of alkynyl diethyl acetals has been efficiently realized, selectively affording (*E*)-2-(1-halobenzylidene or alkylidene)-substituted five-membered carbo- and heterocycles. The present protocol has provided a new alternative route to vinylic C-Cl and C-Br bond formation.

Acknowledgment. We are grateful to the National Natural Science Foundation of China (20772124) and the National Basic Research Program of China (2009CB825300) for support of this research.

Supporting Information Available: Experimental details, analytical data, copies of NMR spectra, and X-ray crystallographic data for **2o**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL9005689

2116 Org. Lett., Vol. 11, No. 10, 2009

⁽²¹⁾ For selected recent reports on C—Cl bond formation, see: (a) Kalyani, D.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130, 2150. (b) Gaspar, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2008, 47, 5758. (c) Mundal, D. A.; Lee, J. J.; Thomson, R. J. J. Am. Chem. Soc. 2008, 130, 1148. (d) Yin, G. Y.; Liu, G. S. Angew. Chem., Int. Ed. 2008, 47, 5442. (e) Wan, X. B.; Ma, Z. X.; Li, B. J.; Zhang, K. Y.; Cao, S. K.; Zhang, S. W.; Shi, Z. J. J. Am. Chem. Soc. 2006, 128, 7416.

^{(22) (}a) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461. (b) Chrovian, C. C.; Knapp-Reed, B.; Montgomery, J. Org. Lett. 2008, 10, 811. (c) Ng, S.-S.; Ho, C.-Y.; Schleicher, K. D.; Jamison, T. F. Pure Appl. Chem. 2008, 80, 929.